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ABSTRACT
The thermal contact resistance (TCR) problem is catego-

rized into three different problems: geometrical, mechanical, and
thermal. Each problem includes a macro and micro scale sub-
problem; existing theories and models for each part are reviewed.

Empirical correlations for microhardness, and the equivalent
(sum) rough surface approximation are discussed. Suggested
correlations for estimating the mean absolute surface slope are
summarized and compared with experimental data.

The classical conforming rough contact models, i.e elastic
and plastic, as well as elastoplastic models are reviewed. A set
of scale (dimensionless) relationships are derived for the contact
parameters, i.e. the mean microcontact size, number of micro-
contacts, density of microcontacts, and the external load as func-
tions of dimensionless separation, for the above models. These
scale relationships are plotted; it is graphically shown that the
behavior of these models, in terms of the contact parameters,
are similar.

The most common assumptions of existing thermal analysis
are summarized. As basic elements of thermal analysis, spread-
ing resistance of a circular heat source on a half-space and flux
tube are reviewed, also existing flux tube correlations are com-
pared.

More than 400 TCR data points collected by different re-
searchers during last forty years are grouped into two limiting
cases: conforming rough, and elasto-constriction. Existing TCR
models are reviewed and compared with the experimental data
at these two limits. It is shown that the existing theoretical
models do not cover both of the above-mentioned limiting cases.

1Ph.D. Candidate, Department of Mechanical Engineering.
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NOMENCLATURE
A = area, m2

a = radius of contact, m
b = flux tube radius, m
c1, c2 = microhardness coefficients, GPa,−
d = mean plane separation, GW model
dV = Vickers indentation diagonal, µm
E = Young’s modulus, GPa
E0 = equivalent elastic modulus, GPa
F = external force, N
H,HB = bulk hardness, GPa
Hmic = microhardness, GPa
HBGM = geometric mean Brinell hardness, GPa
h = thermal contact conductance, W/m2K
k = thermal conductivity, W/mK

ks =
harmonic mean thermal
conductivity,W/mK

L = sampling length, m
m = effective mean absolute surface slope, −
m0 = effective RMS surface slope, −
ns = number of microcontacts
P = pressure, Pa
Q = heat flow rate, W
q = heat flux, W/m2

R = thermal contact resistance, K/W
RMS = root mean square
Ra = arithmetic average surface roughness, µm
Rq = RMS surface roughness, µm
T = temperature, K
Y = mean surface plane separation, m
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Greek
β = summits radii of curvature, m
γ = plasticity index
δ = surface max out-of-flatness, m
ε = flux tube relative radius
η = microcontact density
κ = HB/HBGM
λ = dimensonless separation
ν = Poisson’s ratio
φ = normal probability function
ψ = dimensionless spreading resistance
ρ = radius of curvature, m
σ = RMS surface roughness, µm
ω = normal deformation, m
ξ = emprical correction factor

Subscripts
0 = value at origin
1, 2 = surface 1, 2
a = apparent
b = bulk
c = conduction, contact
e = effective
g = gap
GW = Greenwood and Williamson
Hz = Hertz
j = joint
L = large (macro scale)
m = mean
mac = macro
mic = micro
r = real
s = small
V = Vickers

INTRODUCTION

Heat transfer through interfaces formed by the mechan-
ical contact of two non-conforming rough solids, occurs in a
wide range of applications, such as: microelectronic cool-
ing, spacecraft structures, satellite bolted joints, nuclear
engineering, ball bearings, and heat exchangers. Analyti-
cal, experimental, and numerical models have been devel-
oped to predict thermal contact resistance since the 1930’s.
The number of publications on thermal contact resistance
amounts to several hundred papers, which illustrates the
importance of this issue, and also indicates that the de-
velopment of a general predictive model is a difficult task.
Generally, contact between two surfaces occurs only over
microscopic contacts. The real area of contact, the total
area of all microcontacts, is typically a small fraction of
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Figure 1. Macro and micro thermal constriction/spreading resistances

the nominal contact area [1,2]. As illustrated in Fig.1, the
macroscopic contact region arises due to out-of-flatness of
bodies; and the microcontacts form due to interface be-
tween contacting asperities of rough surfaces. In these sit-
uations heat flow experiences two stages of resistance in
series, macroscopic and microscopic constriction resistance
[3-5]. This phenomenon leads to a relatively high tempera-
ture drop across the interface.

Thermal energy can be transferred between contacting
bodies by three different modes, i) conduction at the mi-
crocontact spot, ii) conduction through the interstitial fluid
in the gap between the contacting solids, and iii) thermal
radiation across the gap. The radiation heat transfer re-
mains small and can be neglected for surface temperatures
up to 700 K [3,6]. Since in this study the interstitial fluid
is assumed to be absent, the only remaining heat transfer
mode is conduction at the microcontacts.

Thermal contact resistance (TCR) problems basically
consist of three different problems: geometrical, mechani-
cal, and thermal. Figure 2 illustrates the thermal contact
resistance problem flow diagram and its components. The
heart of a TCR analysis is its mechanical part. Any solu-
tion for the mechanical problem requires that the geometry
of the contacting surfaces (macro and micro) be quantita-
tively described. The mechanical problem also includes two
parts: macro or large-scale contact and micro or small-scale
contact. The mechanical analysis determines the macro-
contact radius, aL, and the pressure distribution for the
large-scale problem. For the microcontact problem separa-
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Figure 2. Thermal contact resistance modeling flow diagram

tion between the mean contacting planes, microcontact size,
density of microcontacts, and the relative microcontact ra-
dius are calculated. The macro and the micro mechanical
problems are coupled. The thermal analysis, based on the
results of the mechanical analysis, is then used to calculate
the microscopic and macroscopic thermal resistances.

GEOMETRICAL ANALYSIS

It is necessary to consider the effect of both sur-
face roughness and out-of-flatness on the contact of non-
conforming rough surfaces. Therefore, the geometrical anal-
ysis is divided into micro and macro parts.

Micro Geometrical Analysis

All solid surfaces are rough, this roughness or surface
texture, can be thought of as the surface deviation from the
nominal topography. Surface textures can be created using
many different processes. Most man-made surfaces, such as
those produced by grinding or machining have a pronounced
“lay”. Generally, the “Gaussian surface” term is used to
refer to a surface, where its asperities are isotropic and ran-
domly distributed over the surface. It is not easy to produce
a wholly isotropic roughness. The usual procedure for ex-
perimental purposes is to air-blast a metal surface with a
cloud of fine particles, in the manner of shot peening, which
gives rise to a randomly created surface. According to Liu,
et al. [8] five types of instruments are currently available
for measuring the surface topography, namely: stylus-type

surface profilometer, optical (white-light interference) mea-
surements, Scanning Electron Microscope (SEM), Atomic
Force Microscope (AFM), and Scanning Tunneling Micro-
scope (STM). Among these, the first two instruments are
usually used for macro-to-macro asperity measurements,
whereas the others may be used for micro or nanometric
measurements. Surface texture is most commonly measured
by a profilometer, which draws a stylus over a sample length
of the surface. A datum or centerline is established by find-
ing the straight line (or circular arc in the case of round
components) from which the mean square deviation is a
minimum. The arithmetic average of the absolute values of
the measured profile height deviations, Ra, taken within a
sampling length from the graphical centerline [9]. The value
of Ra is

Ra =
1

L

Z L

0

|z (x)|dx (1)

where, L is the sampling length in the x direction and z is
the measured value of the surface height along this length.
When the surface is Gaussian, the standard deviation σ is
identical to the RMS value, Rq

σ = Rq =

s
1

L

Z L

0

z2 (x) dx (2)

For a Gaussian surface, Ling [10] showed that the average
and RMS heights are related as follows

Rq ≈
r

π

2
Ra ≈ 1.25Ra (3)

Similarly, the absolute average and RMS asperity slopes, m
and m0 respectively, can be determined across the sampling
length from the following

m =
1

L

Z L

0

¯̄̄̄
dz (x)

dx

¯̄̄̄
dx, m0 =

s
1

L

Z L

0

µ
dz (x)

dx

¶2
dx
(4)

Mikic and Rohsenow [4] showed that for Gaussian surfaces
the relationship between the average and RMS values of the
asperity slopes ism0 ≈ 1.25m. Tanner and Fahoum [11] and
Antonetti et al. [12], using published experimental surface
data, suggested empirical correlations to relate RMS asper-
ity slope, m0, to average roughness, Ra. Lambert [13], also
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Figure 3. Comparison between correlations for m and experimental data

Table 1. Correlations for m, Gaussian surface

Reference Correlation

Tanner and Fahoum [11] m = 0.152 σ0.4

Antonetti et al. [12] m = 0.124 σ0.743, σ ≤ 1.6 (µm)

Lambert [13] m = 0.076 σ0.52

using the same method, correlated the absolute average as-
perity slopes, m, as a function of RMS roughness (micron);
correlations for m are summarized in Table 1. Figure 3
illustrates the comparison between these correlations and
experimental data. As shown in Fig.3, the uncertainty of
the above correlations is high, and use of these correlations
are justifiable only where the surface slope is not reported
and or a rough estimation of m is needed.

Equivalent (Sum) Rough Surface According to the ex-
amination of the microgeometry with equivalent magnitude
in the vertical direction and in the traversing direction,
asperities seem to have curved shapes at their tops [14].
A common assumption/methodology to model the surface
roughness is the representation of surface asperities by sim-
ple geometrical shapes with a probability distribution for
the different asperity parameters involved. One of the first
presentations to use this asperity-based model is found in
Coulomb’s work in 1782. To explain the laws of friction,
he assumed that the asperities possessed a spherical shape
all of which had the same radius and the same summit al-
titude. Greenwood and Williamson [1] assumed that each

asperity summit had a spherical shape whose height above a
reference plane had a normal (Gaussian) probability density
function. Williamson et al. [15] have shown experimentally
that many of the techniques used to produce engineering
surfaces give a Gaussian distribution of surface heights.

The solution of any contact mechanics problem requires
that the geometry of the intersection and overlap of the two
undeformed surfaces be known as a function of their relative
position. Greenwood [16] stated that; “a genuine treatment
of two rough surfaces is complicated by the difficulty of de-
scribing the unit event, the formation of a single contact
spot. For example, if both surfaces are covered by spheres,
it is necessary to study the contact of one sphere on the
shoulder of another, and then evaluate the probabilities of
different degrees of misalignment, in order to get the aver-
age unit event. A non-genuine treatment is comparatively
simple: both surfaces are taken to be rough with normal dis-
tributions. The statistical treatment now concerns the prob-
ability of the sum of two heights (which is also normally dis-
tributed) exceeding the separation, and this is exactly equiv-
alent to a distribution of a single variable.” In other words,
the contact between Gaussian rough surfaces can be con-
sidered as the contact between a single Gaussian surface,
having the effective (sum) surface characteristics, placed in
contact with a perfectly smooth flat surface. Also, since the
slope, m, of a profile is proportional to the difference be-
tween adjacent equispaced ordinates; m is Gaussian if the
profile is Gaussian [17]. This simplification was used by
many researchers, such as: Clausing and Chao [3], Cooper
et al. [18], Francis [19], and Johnson [7]. The equivalent
roughness and surface slope can be calculated from

σ =
q
σ21 + σ22 and m =

q
m2
1 +m

2
2 (5)

According to Francis [19], a contact model based on the
sum (equivalent) surface circumvents the problem of mis-
alignment of contacting peaks; in addition, the sum surface
sees peak to valley and peak to saddle contacts. The sum
surface of two Gaussian surfaces is itself Gaussian and if
parent surfaces are not exactly Gaussian, the sum (equiv-
alent) surface will be closer to Gaussian than the parent
surfaces. Additionally, the sum surface will be in general
less anisotropic than the two contacting surfaces, thus the
Gaussian sum surface is a reasonable basis for a general con-
tact model [19]. Figure 4 shows a normal section through
the contact in which the surfaces are imagined to overlap
without deforming, and the equivalent rough or sum sur-
face of the contact in the same normal section. The overlap
geometry as a function of the mean separation, Y, of the
undeformed surfaces is thus given directly and exactly by
the shape of the equivalent rough surface. The number of
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microcontacts, which have formed, is simply the number of
equivalent surface peaks that have; Z ≥ Y .

Macro Geometrical Analysis

Many studies on thermal contact resistance ideally as-
sume a uniform distribution of micro contact spots, i.e. con-
forming rough surface models. Such approaches are success-
ful, where the macroscopic nonuniformity of the contact is
negligible. However, no real engineering surfaces are per-
fectly flat, thus the influence of macroscopic nonuniformity
can never be ignored. Considering the waviness or out-of-
flatness of contacting surfaces in a comprehensive manner is
very complex because of the case-by-case nature of the wavi-
ness. Certain simplifications must be introduced to describe
the macroscopic topography of surfaces by a few parame-
ters. A sphere is the simplest example of a macroscopically
homogenous surface. Specifically, its profile is described
only by its radius. Theoretical approaches by Clausing and
Chao [20], Mikic and Rohsenow [4], Yovanovich [5], Nishino
et al. [21], and Lambert and Fletcher [22] assumed that a
spherical profile may approximate the shape of the macro-
scopic nonuniformity. According to Lambert [13] this as-
sumption is justifiable, because nominally flat engineering
surfaces are often spherical, or crowned (convex) with a
monotonic curvature in at least one direction.

According to Johnson [7], in static frictionless contact
of solids, the contact stresses depend only upon the rela-
tive profile of the two surfaces, i.e. upon the shape of the
interstitial gap between them before loading. The actual
system geometry may be replaced, without loss of general-
ity, by a flat surface and a profile, which results in the same
undeformed gap between the surfaces. For convenience, all
elastic deformations can be considered to occur in one body,
which has an effective elastic modulus and the other body
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Figure 5. Flow diagram of geometrical modeling

is assumed to be rigid. The effective elastic modulus can be
found from

1

E0
=
1− υ21
E1

+
1− υ22
E2

(6)

where, E and υ are the Young’s modulus and Poisson’s
ratio, respectively. For the contact of two spheres, the ef-
fective radius of curvature is:

1

ρ
=
1

ρ1
+
1

ρ2
(7)

The relation between radius of curvature and the maximum
out-of-flatness is [3]

ρ =
b2L
2δ

(8)

where, δ is the maximum out-of-flatness of the surface.
Figure 5 details the procedure, which has been used

widely for the geometric modeling of the actual contact be-
tween two curved rough bodies. As the result of the above,
the complex geometry of non-conforming rough contacts
can be simplified to the contact of the equivalent truncated
spherical surface with the equivalent rough flat.

Microhardness

Hardness is defined as the resistance to permanent de-
formation; hardness definitions and tests can be found in
various standard textbooks e.g. Tabor [2], and Mott [23].
The most common hardness testing method is the static
indentation. In a static indentation test, a steady load
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is applied to an indenter which may be a ball, cone or
pyramid and the hardness is calculated from the area or
depth of indentation produced. Hegazy [24] demonstrated
through experiments with four alloys, SS 304, nickel 200,
zirconium-2.5% niobium, and Zircaloy-4, that the effective
microhardness is significantly greater than the bulk hard-
ness. As shown in Fig.6, microhardness decreases with in-
creasing depth of the indenter until bulk hardness is ob-
tained. Hegazy concluded that this increase in the plastic
yield stress (microhardness) of the metals near the free sur-
face is a result of local extreme work hardening or some sur-
face strengthening mechanism. He derived empirical corre-
lations to account for the decrease in contact microhardness
of the softer surface with increasing depth of penetration of
asperities on the harder surface

Hv = c1 (d
0
v)
c2 (9)

where, Hv is Vickers microhardness in (GPa), d
0
v = dv/d0

and d0 = 1 (µm), dv is Vickers indentation diagonal in
(µm), and c1, c2 are correlation coefficients determined from
experimental measurements. Table 2 shows c1 and c2 for
some materials. Relating the hardness of a microcontact
to the mean size of microcontacts, Hegazy [24] suggested
a correlation for effective microhardness (conforming rough
surfaces)

Hmic = c1

µ
0.95

σ0

m

¶c2
(10)

where, σ0 = σ/σ0 and σ0 = 1 (µm) , σ is surface roughness
in micrometers. Microhardness depends on several parame-

Table 2. Vickers microhardness coefficients, Hegazy [24]

Material c1(GPa) c2

Zr-4 5.677 -0.278

Zr-2.5wt% Nb 5.884 -0.267

Ni 200 6.304 -0.264

SS 304 6.271 -0.229

ters: mean surface roughness, mean absolute slope of asper-
ities, method of surface preparation, and applied pressure.
Song and Yovanovich [25] related Hmic to the surface pa-
rameters and nominal pressure (conforming rough surface)

P

Hmic
=

·
P

c1 (1.62σ0/m)
c2

¸1/(1+0.071c2)
(11)

Sridhar [26] suggested empirical relations to estimate Vick-
ers microhardness coefficients, using the bulk hardness of
the material. Two least-square-cubic fit expressions were
reported

c1 = HBGM
¡
4.0− 5.77κ+ 4.0κ2 − 0.61κ3¢

c2 = −0.57 + 0.82κ− 0.41κ2 + 0.06κ3 (12)

where, κ = HB/HBGM , HB is the Brinell hardness of the
bulk material, and HBGM = 3.178(GPa). The above cor-
relations are valid for the range 1.3 ≤ HB ≤ 7.6 (GPa)
with the RMS percent difference between data and calcu-
lated values were reported; 5.3% and 20.8% for c1, and c2,
respectively.

MECHANICAL ANALYSIS

Figure 7 illustrates the mechanical analysis overview for
contact of spherical rough surfaces, which includes; a macro
and a micro part. Existing theories/models for each part
(macro and micro) is categorized based on the normal de-
formation mode of the bulk (substrate) and asperities into:
elastic, plastic, and elastoplastic groups.

Macrocontact Problem

When two smooth solid spheres, or equivalently a flat
and the effective sphere, are pressed against each other, with
increase in external load, the three ranges of loading: purely
elastic, elastic-plastic (contained) and fully plastic (uncon-
tained) occur in the most engineering structures. Hertz
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[27] developed his elastic contact theory by introducing the
simplification that each body can be regarded as an elastic
half-space loaded over a small contact region of its plane
surface. He also assumed surfaces are continuous and non-
conforming, strains are small (to be in the elastic limit),
surfaces are frictionless, and the pressure distribution is

P (r) = P0

q
1− (r/aHz)2. The Hertz theory expressions,

can be summarized as

aHz =

µ
3Fρ

4E0

¶1/3
ω0 =

a2Hz
ρ
=

µ
9F 2

16ρE02

¶1/3
(13)

P0 =
3F

2πa2Hz
=

Ã
6FE0

2

π3ρ2

!1/3

where, ω0 is the maximum deformation, and P0 is the max-
imum pressure (at the center of the contact).

According to Johnson [7], the load at which plastic yield
begins in the contact of two solids, is related to the yield
point of the softer material. The yield point can be found
either from Tresca’s maximum shear stress, or Von Mises’
shear strain-energy criterion. When the yield point is first
exceeded the plastic zone is small and fully contained by
material which remains elastic so that the plastic strains
are of the same order of magnitude as the surrounding elas-
tic strains. In these circumstances the material displaced
by the indenter, is accommodated by an elastic expansion
of the surrounding solid. As the indentation becomes more

severe, the plastic zone (core) expands, and an increasing
pressure is required beneath the indenter to produce the
necessary expansion. Eventually the plastic zone breaks
out to the free surface and displaced material is free to es-
cape by plastic flow to the sides of the indenter. This is
the uncontained mode of deformation, which should be an-
alyzed by the theory of rigid-plastic solids [7]. However,
the contact load must be increased about 400 times from
the point of initial yielding to the state of fully plastic flow,
which indicates that the elastoplastic transitional region is
very long.

When the plastic deformation is severe so that the plas-
tic strains are large compared with the elastic strains, the
elastic deformation may be neglected. Provided the ma-
terial does not strain-harden to a large extent, it may be
idealized as a perfectly plastic solid, which flows plastically
at a constant stress (roughly three times the yield stress)
[7]. A loaded body of rigid-plastic material consists of re-
gions in which, plastic flow takes place and regions in where
there is no deformation due to the assumption of rigidity.
Hardy et al. [28], using a numerical analysis, showed that
the plastic flow leads to a flattening of the pressure distribu-
tion and at high loads may peak slightly towards the edge
of the contact area.

Microcontact Problem

Based on the assumed deformation mode of asperities,
existing microcontact mechanical models can be categorized
into three main groups: plastic, elastic, and elastoplastic
models. The fundamental assumptions, which are common
in most of the models can be summarized as

• contacting surfaces are rough, isotropic, with a Gaus-
sian asperity distribution

• behavior of a given microcontact is independent of all
other microcontacts

• interfacial force on any microcontact spot acts normally
(no friction)

• the deformation mechanics (i.e. the stress and displace-
ment fields) are uniquely determined by the shape of the
equivalent surface.

Plastic Models Abott and Firestone [29] developed the
most widely used model for a fully plastic contact. With the
concept of equivalent roughness, the model assumes that the
asperities are flattened or, equivalently penetrate into the
smooth surface without any change in the shape of the part
of surfaces not yet in contact. Therefore, bringing the two
surfaces together within a distance Y is equivalent to slicing
off the top of the asperities at a height Y above the mean
plane. Since the true area of contact is much smaller than
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the apparent contact area, the pressure at the top of the as-
perities must be sufficiently large that they are comparable
with the strength of the materials of the contacting bodies.
Bowden and Tabor [30], and Holm [31] suggested that these
contact pressures are equal to the flow pressure of the softer
of the two contacting materials and the normal load is then
supported by plastic flow of its asperities. Therefore, pres-
sure at microcontacts will be equal to the microhardness
and effectively independent of load and the contact geom-
etry. The true area of contact is then proportional to the
load, Ar/Aa = Pm/Hmic, where Pm is the mean apparent
contact pressure.

Pullen and Williamson [32] experimentally investigated
plastic flow under large loads. They assumed that mate-
rial displaced from the contacting regions must reappear by
raising some part of the non-contacting surface. They as-
sumed that the volume of material remained constant and
that the material that is plastically displaced appears as a
uniform rise over the entire surface. Since the uniform rise
will not affect the shape of the surface outside the contact
area, they showed that the contact area due to the interac-
tion of micro contacts is not proportional to the normal load
(at relatively high loads); and proposed as a good approx-
imation; Ar/Aa = Pp/ (1+ Pp) , where Pp = Pm/Hmic.
Note that this phenomenon is important only at relatively
large pressures.

Some authors used conical or curved shapes to de-
scribe the morphology of asperities. Tsukizoe and Kisakado
[33,34], assumed a conical shape for surface asperities of
equal base angle, which depends on the surface mean ab-
solute slope. They proposed a statistical contact model for
predicting the contact spot size and density for an isotropic
Gaussian rough surface in contact with an ideal smooth flat
surface. On the basis of this assumption and neglecting the
asperity interactions, they obtained the following expres-
sions for microcontact size and number

as =
√
2
π (σ/m) /λ

ns =
√
π
8

¡
m
σ

¢2
λ exp

¡−λ2¢Aa (14)

where, λ = Y/
√
2σ is the dimensionless separation.

Cooper et al.[18], based on the level-crossing theory and
using the sum surface approximation, derived relationships
for mean microcontact size, and number of microcontacts by
assuming hemispherical asperities whose height and surface
slopes have Gaussian distributions

as =
q

8
π (σ/m) exp

¡
λ2
¢
erfc (λ)

ns =
1
16Aa (m/σ)

2 exp
¡−2λ2¢/erfc (λ) (15)
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Figure 8. Greenwood and Williamson [1] geometrical model

Their model was essentially based on the assumption that
each microcontact consists of two hemispherical asperities
in symmetric (plastic) contact. They also showed that the
ratio of real area of contact to the apparent area, as a func-
tion of Y , could be related to the probability function

Ar
Aa

=

Z ∞
Y

φ (z) dz =
1

2
erfc (λ) (16)

where, φ (z) is the normal probability function of the asper-
ity heights defined as

φ (z) =
1√
2πσ

exp

µ−z2
2σ2

¶
(17)

Elastic Models For applications such as lubrication or
moving machine parts in which the contacting surfaces meet
many times, Archard [35] pointed out that the asperities
may flow plastically at first but they must reach a steady
state in which the load is supported elastically. He then
offered a model in which each asperity is covered with mi-
cro asperities, and each micro asperity with micro-micro
asperities that gave successive closer approximations to the
friction law, Ar = F, as more stages were considered.

Greenwood and Williamson [1] (GW) developed an
elastic model for contact of flat rough surfaces based on
the deformation of an average size summit. As shown in
Fig.8, they assumed that all summits have the same radius
of curvature at their top, and possess a Gaussian distribu-
tion about a mean reference plane, and the distribution of
summit heights is the same as the heights standard devi-
ation, i.e.: σsummit = σ. GW model required three input
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parameters: the standard deviation of summit height distri-
bution σsummit, the surface density of asperities ηGW , and
the radius of curvature of the summits β that was assumed
to be constant. Relationships for the GW model, as re-
ported, are

ns = ηGWAaI0 (d
0)

Ar = πηGWAaβσI1 (d
0) (18)

F =
4

3
ηGWAaβ

1/2σ3/2E0I3/2 (d0)

where, d0 = d/σ, and;

In (d
0) =

1√
2π

Z ∞
d0
(s− d0)n exp ¡−s2/2¢ ds

(19)

Unlike other models, the GW model is based on the con-
tact of summits and separation, d, is measured from the
mean summit line (not the surface mean line), which is lo-
cated somewhere above the mean surface plane. Since it
was assumed that the summits standard deviation is the
same as the surface roughness, the GW relationships can be
re-written as functions of λ = Y/

√
2σ (to make the rela-

tionships comparable with other models). After evaluating
the integrals and simplifying, the relationships become

ns =
1

2
ηGWAaerfc (λ)

Ar =

√
π

2
ηGWAaβσ

£
exp

¡−λ2¢−√πλ erfc (λ)¤ (20)
F =

21/4

3
√
π
ηGWAaE

0β1/2σ3/2
√
λ exp

¡−λ2/ 2¢h¡
1+ 2λ2

¢
K 1

4

¡
λ2/ 2

¢− 2λ2K 3
4

¡
λ2/ 2

¢i
where, Kn (.) is the modified Bessel function of the second
kind of the nth order.

The GW asperity model has been extended to include
other contact geometries, e.g. curved surfaces [36], more
complex geometries, e.g. non-uniform radii of curvature of
asperity peaks [37], and anisotropic surfaces [38]. White-
house and Archard [37] and Onions and Archard [39] fur-
ther improved the statistic model by representing the fea-
tures of the surface topography with two parameters: the
standard deviation, σ, and the exponent of an exponential
correlation function, which was named the “correlation dis-
tance”. Bush et al. [40] developed an elastic contact model
for isotropic surfaces that treated the asperities as ellipti-
cal paraboloids with random principal axis orientation and

aspect ratio. O’Callaghan and Cameron [41] developed a
model for the isotropic problem addressed by Bush et al.
[40]. In their model, both surfaces can be rough and as-
perities need not contact at their tops. O’Callaghan and
Cameron [41] concluded, as did Francis [19], that the con-
tact of two rough surfaces was negligibly different from the
contact of a smooth and an equivalent rough surface. Mc-
Cool [42] compared the basic GW model with other more
general isotropic and anisotropic models and found that the
simpler GW model, despite its simplistic form, gives good
results.

Elastoplastic Models Chang et al. [43], using GW
model assumptions, presented a model based on volume
conservation of an asperity control volume during plastic
deformation. The deformed asperity was modeled as a trun-
cated spherical segment and its radius was assumed to be
the same as that of the undeformed asperity. For all plasti-
cally deformed asperities the average pressure over the con-
tact area was assumed to be a factor of hardness, which was
constant throughout the elastic-plastic deformation. Zhao
et al. [44], using the Chang et al. [43] model, developed an
elastic-plastic microcontact model for nominally flat rough
surfaces. The transition from elastic deformation to fully
plastic flow of the contacting asperities was curve-fitted. A
cubic polynomial, smoothly joining the expressions for elas-
tic and plastic area of contacts spans the elastoplastic region
based on two extremes of the Chang et al. [43] model.

The advantage of the GW-type models is their (rela-
tive) simplicity and explicitness in expressions. However,
assuming a constant summit radius is unrealistic; for a ran-
dom surface, β is also a random variable [19]. In addition β
and ηGW cannot be measured directly and must be calcu-
lated through statistical relationships, and are sensitive to
the sampling length of the surface measurement [7].

Deformation Mode of Asperities When real surfaces are
pressed together they make contact at numerous points,
which deform, elastically, plastically or elastoplastically to
support the load. According to Tabor [2] when two metals
are placed in contact “they will be supported on the tips of
their asperities, at first the deformation is elastic, but for
asperities of the order of µm radius, the minutest loads will
produce plastic deformation. Indeed full plasticity may oc-
cur even for the hardest steels at a load of the order of a few
milligrams.” Tabor showed that in most practical cases, the
real area of contact is proportional to the applied load. It is
also inversely proportional to the effective hardness of the
surface asperities. Greenwood [16] described the contact of
two surfaces as: “surfaces touch at a large number of con-
tacts, and these contacts will be in all the states from fully
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elastic, to fully plastic. The fully elastic ones are a negli-
gible fraction of the total; the effective flow pressure will be
intermediate between plastic and elastic values.” Consider-
ing the fact that the plastic flow is irreversible and cannot
be repeated on subsequent loadings, Archard [35] empha-
sized the point that the normal contact must be elastic. He
showed that any elastic model (based on simple Hertzian
theory) in which the number of contacts remains constant
will give Ar ∼ F 2/3, which does not satisfy the observed
proportionality Ar ∼ F reported by Tabor [2]. But, if the
average contact size remains constant, and the number of
microcontact increases, the area will be proportional to the
load.

Greenwood and Williamson [1] introduced a plastic-
ity index as a criterion for plastic flow of microcontacts,
γGW = (E0/H)

p
σ/β. They reported that the load has

little effect on the deformation regime. When the index
is less than 0.6, plastic contact could be caused only if the
surfaces were forced together under very large nominal pres-
sure. When γGW ≥ 1 plastic flow will occur even at small
nominal pressures. Based on the plasticity index, they con-
cluded that; “most of surfaces have plasticity indices larger
than 1.0, and thus, except for especially smooth surfaces,
the asperities will flow plastically under the lightest loads, as
has been frequently postulated.” Chang et al. [43] with the
same assumptions as GW, set the criteria for the deforma-
tion mode based on the deformation of an average asperity.
For compliances less than the critical compliance ωc, where
ωc is the inception of plastic deformation based on exper-
imental work of Tabor [2] and Johnson [7], the contact is
elastic and Hertzian theory can be applied. For compliances
higher than ωc, a plastic model was used. Mikic [45] pro-
posed an alternative plasticity index, γMikic = Hmic/E

0m.
Mikic also reported that the mode of deformation, as stated
by GW, depends only on material properties and the shape
of the asperities, and it is not sensitive to the pressure level.
Mikic performed an analysis to determine the contact pres-
sure over the contact area based on the fact that all contact
spots do not have the same contact pressure, although the
average contact pressure would remain constant. For sur-
faces with γMikic ≥ 3, 90% of the actual area will have
the elastic contact pressure, therefore the contact will be
predominantly elastic, and for γMikic ≤ 0.33, 90% of the
actual area will have the plastic contact pressure, therefore
the contact will be predominantly plastic. He concluded
that for most engineering surfaces the asperity deformation
mode is plastic and the average asperity pressure is the ef-
fective microhardness.

To compare elastic and plastic models, Greenwood and
Williamson [1] (GW) elastic, Cooper et al. [18] (CMY)
plastic, and Tsukizoe and Kisakado [33, 34] (TK) plastic
models were chosen, and their trends plotted vs. the di-

mensionless mean separation. GW requires input surface
parameters; η, β and σ, while CMY and TK require σ, m,
thus a quantitative comparison between these models re-
quires detailed surface information, and would be restricted
to a particular case. However, for a contact, surface param-
eters are constant and do not change as separation varies.
Therefore, by considering surface parameters constant, scale
relationships derived and these models compared quantita-
tively. This comparison only illustrates trend/behavior of
surface parameters predicted by each model as the separa-
tion changes.

Table 3 shows the scale relationships that were used in
the comparison. The real area of microcontacts was cal-
culated from, Ar = πnsa

2
s. Additionally, for CMY and TK

models, as the fully plastic deformation of asperities was as-
sumed, the external force can be found from, F = HmicAr ,
where microhardness (for a contact) considered a constant.

The range of separation in typical real contacts is
roughly, 1.5 ≤ λ ≤ 3 . The (scale) relationships in Table
3 are plotted versus the separation, λ, over a wider range
in Figs. 9 to 12. It can be observed that by decreasing the
separation;

• The mean size of microcontacts in all models increases.
The size of microcontacts in the TK model increases
continuously due to the assumed conical shape of as-
perities, while the predicted mean microcontact size by
GW and CMY approaches some limiting value.

• The real contact area increases and the trends predicted
by the three models are very similar, in the applicable
range of the separation 1.5 ≤ λ ≤ 3.

• The external force also increases in a comparable man-
ner in all three models. It is interesting to observe that
the external force is (nearly) proportional to the real
contact area in GW model, which indicates that GW
(elastic) model behaves similar to plastic models and
an elastic effective microhardness can be defined.

• The number of microcontacts increases in CMY and
TK to a maximum and falls by further decreasing the
separation, while the GW model does not show this
phenomena. As the separation becomes smaller, more
contacting spots form, also the mean size of the existing
microcontact increases, until they begin to merge and
create larger contact spots (clustering), which results
in fewer microcontacts. Based on the microgeometry
model, a rough surface can be imagined as a collection
of peaks and valleys. At the limit when separation ap-
proaches zero, CMY and TK predict that all surface
peaks (asperities higher than the mean line) are cut
off and only the ones under the mean line (valleys) re-
main. On the other hand, the GW model predicts that
the peaks are elastically compressed to the mean-line,
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Table 3. Scale relationships for radius and number of microcontacts, and external force

Model a0s n0s F 0

GW [1]
p
exp (−λ2) /erfc (λ)−√πλ erfc(λ)

√
λ exp

³
−λ2

2

´ h¡
1+ 2λ2

¢
K 1

4

³
λ2

2

´
− 2λ2K 3

4

³
λ2

2

´i
TK [33, 34] 1/λ λ exp

¡−λ2¢ exp
¡−λ2¢ /λ

CMY [18] exp
¡
λ2
¢
erfc(λ) exp

¡−2λ2¢ /erfc(λ) erfc(λ)

λ

a'
s

10-3 10-2 10-1 100

TK [33, 34]
CMY [18]
GW [1]

Figure 9. Mean size of microcontacts

without changing the shape of the rest of the surface
profile.

This analysis may not be strictly correct, since these
models were not designed to cover a low range of separations
and high deformations.

From the comparison, it can be concluded that despite
the different basic assumptions and input parameters in the
GW elastic and CMY and TK plastic models, their behavior
in terms of real contact area, size and number of microcon-
tacts, and the relationship between the external force and
real contact area are comparable (in the applicable range
of the separation). In a manner similar to Greenwood and
Tripp [36] it therefore follows that the behavior of contact-
ing rough surfaces is determined essentially by surface sta-
tistical characteristics, which are the same in the compared
models, and the deformation mode of asperities is a sec-
ond order effect. Additionally, a combination of plastic and
elastic modes would introduce no new features.

Non-Conforming Rough Surface Models

There are very few analytical models for the contact
of non-conforming rough surfaces in the literature. Green-

λ
A'

r
10-3 10-2 10-1 100

TK [33, 34]
CMY [18]
GW [1]

Figure 10. Real contact area

wood and Tripp [36] performed the first in-depth analytical
study of the effect of roughness on the pressure distribution
and deformation of contacting elastic spherical bodies. The
contacting rough surfaces were modeled as a smooth sphere
and a rough flat. With the same assumptions as GW, they
derived a geometrical relationship relating the local separa-
tion to the bulk deformation and the sphere profile. The
elastic deformations produced by a normal pressure dis-
tribution over an area of the surface can be calculated by
superposition, using the Boussinesq solution for a concen-
trated load on a half-space, and using the fact that the
displacement due to an axisymmetric pressure distribution
will also be axisymmetric. The most important trends in
their model were that an increase in roughness resulted in
a decrease in the axial (maximum) contact pressure, P0,
compared with the Hertzian pressure, P0,Hz, and enlarges
the effective macroscopic contact radius, aL , beyond the
Hertzian contact radius.

Tsukada and Anno [46], with the same assumptions
of Greenwood and Tripp [36], developed a model and
offered expressions for pressure distribution as a func-
tion of P0/P0,Hz (non-dimensional maximum pressure) and
aL/aHz (non-dimensional radius of macrocontact area) for
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λ

n'
s

10-3 10-2 10-1 100

TK [33, 34]
CMY [18]
GW [1]

Figure 11. Number of microcontacts

λ

F'

10-3 10-2 10-1 100

TK [33, 34]
CMY [18]
GW [1]

Figure 12. External force

rough sphere-flat contact. Tsukada and Anno [46] and
Sasajima and Tsukada [47] presented these two parame-
ters in graphical form for relatively small radii of curvature
(5,10, and 15 mm) and roughness in the range of (0.1 to 2
µm ) in discrete curves.

THERMAL ANALYSIS

Due to the complex nature of the thermal contact re-
sistance, it is necessary to make some assumptions in order
to develop simple thermophysical models. In addition to
the geometrical and mechanical assumptions, most existing
thermal contact resistance models were based on the follow-

ing common assumptions:

• contacting solids are isotropic, and thermal conductiv-
ity and physical parameters are constant

• contacting solids are thick relative to the roughness or
waviness

• surfaces are clean, and contact is static
• radiation heat transfer is negligible
• microcontacts are circular
• steady-state heat transfer at microcontacts
• microcontacts are isothermal; Cooper et al. [18] proved
that all microcontacts must be at the same tempera-
ture, provided the conductivity in each body is inde-
pendent of direction, position and temperature

• microcontact spots are flat; it is justifiable by consider-
ing the fact that surface asperities usually have a very
small slope [4].

Thermal contact models were constructed based on the
premise that within the macrocontact area a number of heat
channels in the form of cylinders exist. The joint resistance
under vacuum conditions can be calculated by superposition
of microscopic and macroscopic resistances [3, 4, 5, 48, 21,
and 22]:

Rj = Rmic +Rmac (21)

The real shapes of microcontacts can be a wide variety of
singly connected areas depending on the local profile of the
contacting asperities. Yovanovich et al. [49] studied the
steady-state thermal constriction resistance of a singly con-
nected planar contact of arbitrary shape. By using an inte-
gral formulation and a semi-numerical integration process
applicable to any shape, they proposed a definition for ther-
mal constriction resistance based on the square root of the
contact area. The square root of the contact area was found
to be the characteristic dimension and a non-dimensional
constriction resistance based on the square root of area was
proposed, which varied by less than 5% for all shapes consid-
ered. Therefore, the real shape of the contact spots would
be a second order effect, and an equivalent circular contact,
which has the same area, can represent contact spots.

Thermal Constriction/Spreading Resistance

The thermal spreading resistance is defined as the dif-
ference between the average temperature of the contact area
and the average temperature of the heat sink, which is lo-
cated far from the contact area, divided by the total heat
flow rate Q [50, 51]; R = ∆T/Q. Thermal conductance is
defined in the same manner as the film coefficient in con-
vective heat transfer; h = Q/ (∆TAa).
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Figure 13. Circular heat source on a half-space

If it is assumed that the micro contacts are very small
compared with the distance separating them from each, the
heat source on a half-space solution can be used [3]. Fig-
ure 13 illustrates geometry of a circular heat source on a
half-space. Classical steady-state solutions are available for
the circular source areas of radius a on the surface of a
half-space of thermal conductivity k, for two boundary con-
ditions; isothermal and isoflux source. The spreading re-
sistance for isothermal and isoflux boundary conditions are
Rs,isothermal = 1/ (4ka), and Rs,isoflux = 8/

¡
3π2ka

¢
, re-

spectively [50]. It can be seen that the difference between
the spreading resistance for isoflux and isothermal sources
is only 8%, Rs,isoflux = 1.08Rs,isothermal.

As the microcontacts increase in number and grow in
size, a constriction parameter, indicated by ψ (.) , must be
introduced to account for the interference between neigh-
boring microcontacts. Roess [52] analytically determined
the constriction parameter for the heat flow through a flux
tube. Figure 14 illustrates the geometry of two flux tubes
in a series. An equivalent long cylinder of radius, b, is
associated with each microcontact of radius a. The total
area of these flux tubes is equal to the interface apparent
area. Considering the geometrical symmetry, constric-
tion and spreading resistance are identical and in series,
ψspreading = ψconstriction = ψ, Roess [52] suggested an ex-
pression in the form of

Rtwo flux tubes =
ψ (ε)

4k1a
+

ψ (ε)

4k2a
=

ψ (ε)

2ksa
(22)

where, ks = 2k1k2/ (k1 + k2) is the harmonic mean of the
thermal conductivities, and ε = a/b. To overcome the
mixed boundary value problem, Roess replaced the temper-

a

2

k

b

Q

Qk

1

isothermal
or isoflux heat 
contact area

adiabatic

Figure 14. Two flux tubes in series

ature boundary condition by a heat flux distribution pro-

portional to
h
1− (r/a)2

i−1/2
over the source 0 ≤ r ≤ a, and

adiabatic outside the source a < r ≤ b. Roess presented his
results in the form of a series. Mikic and Rohsenow [4],
by using a superposition method, derived an expression for
the thermal contact resistance for half of an elemental heat
channel (semi-infinite cylinder), with isothermal boundary
condition. They found another solution for mixed bound-
ary condition of the flux tube, by using a procedure similar
to Roess [52]. They also studied thermal contact resistance
of the flux tube with a finite length. It was shown that
the influence of the finite length of the elemental heat chan-
nel on the contact resistance was negligible for all values
of l ≥ b , where l is the length of the flux tube. Later
this expression was simplified by Cooper et al. [18], see Ta-
ble 4. Yovanovich [51] generalized the solution to include
the case of uniform heat flux, and arbitrary heat flux over
the microcontact. A number of correlations for isothermal
spreading resistance for the flux tube are listed in Table
4. Figure 15 shows the comparison between these correla-
tions. It is observed that at the limit when ε→ 0, the flux
tube spreading resistance factor approaches one, which is
the case of a heat source on a half-space. Also the results
from all these various correlations for spreading resistance
factor show very good agreement for the range 0 ≤ ε ≤ 0.3,
which is typically the range of interest in thermal contact
resistance applications.
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Table 4. Thermal spreading resistance factor correlations, isothermal contact

area

Reference Correlation

Roess [52]
1− 1.4093ε+ 0.2959ε3 + 0.0525ε5

+0.021041ε7 + 0.0111ε9 + 0.0063ε11

Mikic-Rohsenow [4] 1− 4ε/π
Cooper et al. [18] (1− ε)1.5

Gibson [61] 1− 1.4092ε+ 0.3381ε3 + 0.0679ε5

Negus-Yovanovich [62]
1− 1.4098ε+ 0.3441ε3 + 0.0431ε5

+0.0227ε7

ε

ψ
(ε
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Figure 15. Comparison between thermal spreading resistance correlations,

isothermal contact area

TCR Models for Conforming Rough Surfaces

During the last four decades, a number of experimental
works have been done and a number of correlations were
proposed for nominally flat rough surfaces. Madhusudana
and Fletcher [6], and Sridhar and Yovanovich [53] reviewed
existing conforming rough models. Here only a few models
will be reviewed, in particular those that are going to be
compared with experimental data.

Cooper et al. [18] developed an analytical model, with
the same assumptions that were discussed at the beginning
of this section, for contact of flat rough surfaces in a vacuum.
Eq.(15) shows the mean size and number of microcontacts
and Eq.(16) presents the ratio of real area to the apparent
area. The remaining relations of the Cooper et al. [18]

model is

Rc =
4
√
π

Aa
√
2ks

³ σ
m

´ h1−q1
2erfc (λ)

i1.5
exp (−λ2) (23)

where, Rc, λ =erfc−1 (2Pm/Hmic) , and ks are thermal
contact resistance, dimensionless separation, and harmonic
mean of thermal conductivities, respectively. Yovanovich
[54] suggested a correlation based on the Cooper et al. [18]
model, which is quite accurate for optically flat surfaces

Rc =
(σ/m)

1.25Aaks (P/Hc)
0.95 (24)

TCR Models for Non-Conforming Rough Surfaces

Clausing and Chao [3] were the first to experimentally
study the contact of rough non-flat surfaces. They also de-
veloped an analytical model, with the same assumptions
that were discussed at the beginning of this section, for de-
termining the thermal joint (macroscopic and microscopic)
resistance for rough, spherical surfaces in contact under vac-
uum conditions. Their geometrical contact model is shown
in Fig.16, the effective radius of curvature of the contacting
surface was found from Eq.(8). Using Roess [52] correlation
(see Table 4), the total micro thermal resistance of identi-
cal, circular, isothermal contact spots in the macrocontact
area was

Rs =
ψ (εs)

2ksasns
(25)

The microscopic portion of the Clausing and Chao [3] model
was based on the plastic deformation of asperities; a mea-
sured diamond pyramid hardness was used to consider the
asperity hardness of the contacting surfaces. However, ma-
terial microhardness was multiplied by, ξ, an empirical cor-
rection factor introduced by Holm [31], to account for the
effects of elastic deformation of asperities. The real contact
area Ar, then was calculated

Ar =
F

ξHmic
= nsπa

2
s (26)

Additionally the following simplifications were made to en-
able an estimation of the microscopic constriction resis-
tance:

• the microscopic contact spots were assumed to be iden-
tical and uniformly distributed, in a triangular array,
over the macrocontact area, see Fig.16
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Figure 16. Clausing and Chao [3, 20] geometrical model

• the average size of the microcontacts as was indepen-
dent of load and it was of the same order of magnitude
as the surface roughness, i.e. as ≡ σ.

They did not report the exact relationship between the
microcontact spot size and the roughness. In this study, it is
assumed, as = σ. They assumed an average value of ξ = 0.3
to take into account both plastic and elastic deformation of
microcontacts. Also, a value of ψ (εs) = 1 was assumed,
which means microcontacts were considered as isothermal
circular heat sources on a half-space [3], additionally they
assumed, ξπ = 1. With the above assumptions the micro-
scopic thermal resistance became:

Rs =
σHmic
2ksF

(27)

Neglecting the effect of roughness on the macrocontact area,
the radius of macrocontact, aL, was obtained from the Hertz
theory, Eq.(13), for elastic contact of spheres, reported in
the form (assuming Poisson’s ratio υ21 = υ22 = 0.1)

εL =
aHz
bL

= 1.285

·µ
P

Em

¶µ
bL
δ

¶¸1/3
(28)

where, Em = 2E1E2/ (E1 +E2) , and δ = δ1 + δ2. There-
fore, the thermal joint resistance, based on the Clausing and

Chao [3] model, became

Rj =
σHmic
2ksF

+
ψ (εL)

2ksaL
(29)

where, ψ (.) is the Roess [52] spreading factor (see Table
4). Clausing and Chao [3] verified their model against ex-
perimental data and showed good agreement. Their model
was suitable for situations in which the macroscopic con-
striction resistance was much greater than the microscopic
resistance.

Kitscha [55] and Fisher [56] developed models similar
to Clausing and Chao’s [3] model and experimentally veri-
fied their models for relatively small radii of curvature and
different levels of roughness. Burde [48] derived expressions
for size distribution, and number of microcontacts, which
described the increase in the macroscopic contact radius for
increasing roughness. His model showed good agreement
with experimental data for spherical specimens with rela-
tively small radii of curvature with different levels of rough-
ness. Burde did not verify his model or perform experiments
for surfaces approaching nominally flat. Also, results of his
model were reported in the form of many plots, which are
not convenient to use.

Mikic and Rohsenow [4] studied thermal contact resis-
tance for various types of surface waviness and conditions.
In particular; nominally flat rough surface in a vacuum,
nominally flat rough surfaces in a fluid environment, smooth
wavy surfaces in a vacuum environment (with either of the
following three types of waviness involved: spherical, cylin-
drical in one direction, and cylindrical in two perpendicular
direction), and rough spherical wavy surfaces in a vacuum.
Thermal contact resistance for two spherical wavy rough
surfaces was considered as the summation of a micro and a
macro thermal constriction resistance given by

Rj =
ψ (aL,eff/bL)

2ksaL,eff
+

ψ (εs)

2ksasns
(30)

where, ψ (.) is the Mikic and Rohsenow [4] spreading fac-
tor (see Table 4). Similar to Clausing and Chao [3], the
effective radius of curvature of the contacting surface was
found from Eq.(8). The macrocontact area (for smooth sur-
faces) was determined by the Hertzian theory, Eq.(13). Mi-
kic and Rohsenow [4], assuming fully plastic deformation
of asperities and equivalent surface approximation, derived
expressions for the mean size and number of microcontacts
that were used later by Cooper et al. [18]. Their model
was based on the uniform distribution of identical micro-
contacts inside the macrocontact area. In case of rough
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surface contacts, knowing that the macrocontact area would
be larger than the one predicted by Hertz theory, they de-
fined an effective macrocontact area. This area contained
all the microcontact spots as if they had been uniformly dis-
tributed. Using this definition and the assumption that the
mean surface would deform elastically, they suggested an
iterative procedure for calculating the macrocontact radius.
Mikic and Rohsenow verified their model against three ex-
periments. Their computed ratios of macrocontact radius
to Hertzian macrocontact radius were 1.6, 1.6, and 1.77
for each experiment and were considered constant through-
out the tests, as the external load increased. Mikic and
Rohsenow did not derive the actual continuously varying
pressure distribution for the contact of spherical rough sur-
faces. Additionally their expressions for effective macrocon-
tact radius were very complex, and the iterative solution
was quite tedious.

Later Mikic [57] derived expressions, based on the Mi-
kic and Rohsenow [4] plastic model, for macroscopic and
microscopic thermal resistances in a vacuum, which related
thermal resistances (micro and macro) to arbitrary pres-
sure distribution and surface properties. The derived rela-
tions were general in the sense that they did not require
the knowledge of the effective macrocontact area and they
could be applied for any symmetrical cylindrical or Carte-
sian pressure distribution at an interface.

Lambert [13] studied the thermal contact resistance of
two rough spheres in a vacuum. He started with the Green-
wood and Tripp [36] elastic model for mechanical analysis,
and Mikic [57] thermal model as the basis for his thermal
analysis. Lambert [13] was not able to solve the set of the
mechanical relationships numerically, and mentioned that
“the Greenwood and Tripp [13] model is under-constrained,
and convergence may be achieved for the physically impos-
sible cases”. To obtain numerical convergence, Lambert
implemented results for the dimensionless axial minimum
mean plane, reported by Tsukada and Anno [46], in the
mechanical part of his model. The procedure for apply-
ing the Lambert [13] model (presented in appendix-A of
his thesis) was used to calculate thermal contact resistance
in this study. He suggested two 7th order polynomial ex-
pressions for pressure distribution and radius of macrocon-
tact area as a function of dimensionless load. Lambert also
introduced three dimensionless correction functions in the
form of logarithmic polynomials in his thermal model, with-
out specifying the origin and reasons for their presence.
His approximate procedure was quite long and required
computer-programming skills to apply it. Also, logarithmic
expressions for dimensionless macrocontact radius, aL/aHz
, showed a discontinuity, which caused a strange behavior
in predicted thermal joint resistance (see Figs.17 and 18).
Lambert collected and summarized experimental data re-

Table 5. Parameter ranges for experimental data

Parameters

57.3 ≤ E0 ≤ 114.0 (GPa)

16.6 ≤ ks ≤ 75.8 (W/mK)
0.12 ≤ σ ≤ 13.94 (µm)

0.04 ≤ m ≤ 0.34 (−)
0.013 ≤ ρ / 120 (m)

ported by many researchers and compared his model with
experimental data. He showed a good agreement with ex-
perimental data for nominally flat rough surfaces.

Nishino et al. [21] studied the contact resistance of
spherical rough surfaces in a vacuum under low applied
load. Macroscopic and microscopic thermal contact resis-
tance was calculated based on the Mikic [57] thermal model.
Nishino et al. [21] used a pressure measuring colored film
that provided information, by means of digital image pro-
cessing, about the contact pressure distribution. They also
verified their method experimentally with aluminum alloy
specimens, the experimental data showed good agreement
with their technique. They concluded that the macroscopic
constriction resistance was predominant under the condi-
tion of low applied load. However, the Nishino et al. model
required measurements with pressure sensitive film and they
did not suggest a general relationship between contact pres-
sure and surface profile and characteristics.

COMPARISON BETWEEN TCR MODELS AND EXPERI-

MENTAL DATA

The developed theoretical models by Clausing and
Chao [3] Eq.(29), Yovanovich [54] Eq.(24), and Lambert
[13] are compared with experimental data. References, ma-
terial and physical properties, and surface characteristics of
the experimental data are summarized in Table 5. As indi-
cated in Table 5, the experimental data cover a relatively
wide range of the experimental parameters.

The comparison is done at two extremes; conforming
rough surfaces, where the macro resistance is negligible, and
elasto-constriction limit, where contacting surfaces have rel-
atively small radii of curvature and the micro resistance is
almost negligible.

Thermal contact resistance for the above models was
calculated for a base typical rough surface, the physi-
cal properties and surface characteristics are shown in
Table 6. ρ = 14.3 (mm), and ρ = 100 (m) for elasto-
constriction and conforming rough limits, respectively. Ex-
perimental data collected by Kitscha [55], Fisher [56], and
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Figure 17. Comparison of models with data at the elasto-constriction limit

Table 6. Physical properties and surface characteristics of comparison base

surface

σ = 1.3 (µm) m = 0.073 Hmic = 3.92(GPa)

bL = 7.15 (mm) E0 = 114(GPa) ks = 40.7 (W/mK)

Burde [48] were compared with the theoretical models in
Fig.17. The elasto-constriction approximation introduced
by Yovanovich [58], which accounts only for macro resis-
tance predicted by Hertz theory and neglects the micro ther-
mal resistance completely, was also included in the compar-
ison. The elasto-constriction approximation was included
to clearly demonstrate that the macro resistance is the
dominating part of thermal joint resistance in the elasto-
constriction limit, and the micro thermal resistance is neg-
ligible. As can be seen in Fig.17, the elasto-constriction ap-
proximation and the Clausing and Chao [3] model are very
close and show good agreement with the data. The Lam-
bert [13] model, as the result of its expression for macro-

contact radius aL, showed a strange behavior. As expected,
Yovanovich [54] model, which was developed for conforming
rough surfaces, does not agree with the data.

Experimental data collected by Antonetti [59], Hegazy
[24], and Milanez et al. [60] were compared with the the-
oretical models in Fig.18. As shown, the Yovanovich [54]
model showed good agreement with the data. Lambert [13]
was very close to Yovanovich [54] in most of the compar-
ison range, however the strange behavior in the predicted
macrocontact area showed up as can be seen in the plot.
The Clausing and Chao [3] model under predicted thermal
resistance in the conforming rough region.

Kitscha [55], and Fisher [56] did not report the surface
slope, m; the Lambert [13] correlation was used to estimate
these values (see Table 1). The exact values of radii of
curvature for conforming rough surfaces were not reported.
Since, these surfaces were prepared to be optically flat, radii
of curvature in the order of ρ ≈ 100 (m) are considered for
these surfaces. Table 9 indicates the researchers and the
specimen materials used in the experiments.
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Figure 18. Comparison of models with data at the conforming rough limit

CONCLUDING REMARKS

Thermal contact resistance modeling and its compo-
nents are studied. The modeling process is divided into
three analyses: geometrical, mechanical, and thermal. Also
each one includes a macro and micro scale part.

Suggested empirical correlations to relate surface
slopes, m, to surface roughness, are summarized and com-
pared with experimental data. The comparison shows that
the uncertainty of the correlations is high, and use of these
correlations is not recommended unless only an estimation
of m is required.

GW[1] elastic, CMY [18] and TK [33, 34] plastic con-
forming rough models are reviewed, and a set of scale rela-
tionships for the contact parameters, i.e. the mean micro-
contact size, number of microcontacts, density of microcon-
tacts, and the external load as functions of dimensionless
separation are derived. These scale relationships are com-
pared and it is graphically shown that despite the different
assumptions and input parameters, their behaviors in terms
of the contact parameters are similar. It can be concluded

from the comparison that the behavior of contacting rough
surfaces is determined essentially by surface statistical char-
acteristics. Also a combination of plastic and elastic modes
would introduce no new features.

The common assumptions of the existing thermal anal-
yses are summarized. Suggested correlations by different
researchers for the flux tube spreading resistance are com-
pared. It was observed that, at the limit, the correlations
approach the case of a heat source on a half-space. Also all
the spreading resistance correlations show good agreement
for the applicable range.

Experimental data points obtained for five materials,
namely SS 304, carbon steel, nickel 200, zirconium-2.5% nio-
bium, and Zircaloy-4, are summarized and grouped into two
limiting cases: conforming rough, and elasto-constriction.
These data are non-dimensionalized and compared with
TCR models at the two limiting cases. It is observed that
none of the existing theoretical models covers both of the
above-mentioned limiting cases. This clearly shows the
need to develop theoretical model(s) which can predict TCR
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Table 7. Summary of physical properties and surface charactersitics, con-

forming rough limit

Ref. E0 σ m c1 -c2 ks bL

A,P3435 112.1 8.48 .34 6.3 .26 67.1 14.3

A,P2627 112.1 1.23 .14 6.3 .26 64.5 14.3

A,P1011 112.1 4.27 .24 6.3 .26 67.7 14.3

A,P0809 112.1 4.29 .24 6.3 .26 67.2 14.3

H,NI12 112.1 3.43 .11 6.3 .26 75.3 12.5

H,NI34 112.1 4.24 .19 6.3 .26 76.0 12.5

H,NI56 112.1 9.53 .19 6.3 .26 75.9 12.5

H,NI78 112.1 13.9 .23 6.3 .26 75.7 12.5

H,NI910 112.1 0.48 .23 6.3 .26 75.8 12.5

H,SS12 112.1 2.71 .07 6.3 .23 19.2 12.5

H,SS34 112.1 5.88 .12 6.3 .23 19.1 12.5

H,SS56 112.1 10.9 .15 6.3 .23 18.9 12.5

H,SS78 112.1 0.61 .19 6.3 .23 18.9 12.5

H,Z412 57.3 2.75 .05 3.3 .15 16.6 12.5

H,Z434 57.3 3.14 .15 3.3 .15 17.5 12.5

H,Z456 57.3 7.92 .13 3.3 .15 18.6 12.5

H,Z478 57.3 0.92 .21 3.3 .15 18.6 12.5

H,ZN12 57.3 2.50 .08 5.9 .27 21.3 12.5

H,ZN34 57.3 5.99 .16 5.9 .27 21.2 12.5

H,ZN56 57.3 5.99 .18 5.9 .27 21.2 12.5

H,ZN78 57.3 8.81 .20 5.9 .27 21.2 12.5

M,SS1 113.8 0.72 .04 6.3 .23 18.8 12.5

over all cases including the above mentioned limiting cases
and the transition range where both roughness and out-of-
flatness are present and their effects on contact resistance
are of the same order.
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